
 

 

  
Abstract—I describe in details the method which uses positive 

semidefinite operator properties in deducing non-approximated 
results for quantum mechanical many-body non-integrable systems. 
The steps of the procedure, namely i) the transcription of the 
Hamiltonian in a positive semidefinite form H=O+C, where O is a 
positive semidefinite operator while C is a scalar, ii) the deduction of 
the total particle number dependent ground state by constructing the 
most general solution of the equation O |Ψ> = 0, iii) the 
demonstration of the uniqueness by concentrating on the kernel of 
the operator O, and iv) the study of the physical properties of the 
deduced phase by calculating elevated ground state expectation 
values and the analysis of the low lying part of the excitation 
spectrum, are described in extreme details. 
 

Keywords—Exact ground states,  Hamiltonian in positive  
semidefinite form, Non-integrable systems, Quantum mechanical 
many-body systems.  

I. INTRODUCTION 
HIS paper describes a procedure which can be used for 
deducing exact ground states for  non-integrable 

quantum mechanical many-body systems. I start by 
recapitulating some basic concepts needed in the description 
process of physical systems. 

B. bout Description of Physical Systems 
 Let us fix first the notations which will be often used 
below. The lower bound of a spectrum LB(A) of an 

operator A is defined as follows: If A is an arbitrary self-
adjoint operator, all its eigenvalues a(i) give together the 
spectrum of A, namely Spec(A)={a(1),a(2),a(3),...}. The value 
LB(A) is defined as the minimum component of  Spec(A). 

  In principle LB(A) must not be finite, but a Hamiltonian 
H(S), describing a real physical system S, has always a 

spectrum which is bounded below by a finite bound because S 
exists. The lower bound of the spectrum LB(H(S)) is the 
ground state energy ES,g, hence  
 

(S) – ES,g  =  O(S),                                           (1) 
 

holds, where O(S) represents an operator which besides 
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the fact that it is intimately connected to the system S, 
supplementary possesses the property that do not has negative 
eigenvalues. Please note that (1) is valid independent on 
dimensionality or integrability. This is the reason why this 
simple relation represents one of the main starting points in the 
non-approximated study of non-integrable many-body systems.   

Studying S, if one has the possibility to know and hence to 
work with O(S) instead of H(S),  this has several advantages. 
First, O(S), as the starting H(S), has the spectrum bounded 
below by a finite value. But contrary to the Hamiltonian – 
whose LB(H(S)) is usually unknown -, O(S)  has a known (i.e. 
zero) spectrum's lower bound, namely LB(O(S))=0. Second, 
given by the above mentioned property, the ground state of S 
at total number of particles N, namely |ΨS,N,g >, can be 
obtained simply by deducing the most general solution of the 
equation 

 
O(S)|ΨS,N,g >=0.                                         (2) 

 
Since several techniques [1]-[6] have been worked out for 

solving an equation of the type (2), the observations presented 
above suggest a procedure. This, via (2), can lead to the 
deduction possibility of the  N-dependent, and non-
approximated ground states. I further note that because of the 
N-dependence, such results also provide non-approximated 
information relating the low laying part of the excitation 
spectrum. Indeed, if ES,N,g   is the eigenvalue corresponding  to 
|ΨS,N,g >, the particle number dependent chemical potential 
μ(S,N+1)= ES,N+1,g  -  ES,N,g , and for example the charge gap 
can be expressed as Δ = μ(S,N+1)-μ(S,N). Consequently, Δ=0 
signals metallic characteristics, otherwise if  Δ≠0, the system is 
insulating. The spin gap can be similarly expressed. Σi  

     B. Positive Semidefinite Operators 
 Let us analyze below the connection of the properties 

presented above to the system Hamiltonians. The positive 
semidefinite operators emerge in this technique via (1). In fact, 
the operator O(S) in (1) is a positive semidefinite operator O. 
In fact, from mathematical point of view, the definition of O is 
more complicated, namely: For a Hilbert space H, if for all |φ> 
components of H the expectation value <φ |O|φ> is non-
negative, i.e. 

 
<φ |O|φ> ≥ 0,                                                    (3) 
 

than O is called to be a positive semidefinite operator.            
Now based on (3), a simple Lemma arrises,  (Lemma 1): The 
non-negative eigenvalues requirement is a necessary and 
sufficient condition for O to be a positive semidefinite 
operator. The Proof of this statement is quite simple. Indeed, 
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from (3) it results that all eigenvalues λi of  O are non-
negative, i.e.  λi ≥ 0 holds.  Furthermore, easily can be checked 
that if one negative eigenvalue, say  λ', exists corresponding to 
the eigenfunction |x'>, than (3) calculated with |x'> is no more 
satisfied. Consequently, the non-negative eigenvalues 
requirement is indeed a necessary and sufficient condition for 
O to be a positive semidefinite operator.    

It results that O(S) from (1) is indeed a positive semidefinite 
operator, and since ES,g is a scalar C, the following theorem 
applies:  

Theorem 1.  All Hamiltonians H(S) describing real physical 
systems S can be written in the form 

 
H(S)= O + C                                                (4) 
 

where O is a positive semidefinite operator and C a scalar. In 
this case, the equation for the ground state becomes of the 
form  O|Ψ >=0.  

 The Proof of the theorem is relatively simple. Indeed, based 
on (1),  the scalar nature of ES,g , and Lemma 1, the equality 
(4) automatically holds. Furthermore, since the lowest possible 
eigenvalue of a positive semidefinite operator is zero, see also 
(2), the presented equation for the ground state arrises. Q.E.D. 

Note that Theorem 1. is independent on integrability and 
dimensionality. Hence, we can use it as a starting point in the 
exact study of non-integrable quantum mechanical many-body 
systems. This paper is devoted to the detailed presentation of 
this procedure. 

    C. The Matching Equations  
In what will follows, I show that (4) has a direct algebraic 

consequence. This results as follows. When one transforms the 
Hamiltonian in positive semidefinite form as requested by (4), 
one uses some positive semidefinite operators, which have 
their own numerical parameters (coefficients) denoted 
hereafter by νi .   Besides, in the left side of (4), the Hamiltoni-
an  has its own physical parameters (i.e. coupling constants), 
as for example hopping matrix elements ti,,  on-site  one 
particle potentials єi,, and interaction strenghts Ui.. In these 
conditions it is easy to understand that (4) holds only if a given 
relationship exists in between the positive semidefinite 
operator parameters {νi }, and Hamiltonian parameters 
hereafter denoted by  Λ[H(S)]= Λ({ti,},{єi },{Ui}).  
    Consequently, one can state that the transformation relation 
(4) holds only if a relation exists between    Λ({ti,},{єi },{Ui}) 
and the parameters P({νi },C), where C is the scalar in (4). This 
relationship (let denote it by F) which formally can be written 
as 
 
 Λ({ti,},{єi },{Ui})=F[P({νi },C)]                            (5) 
 
is called to be the matching system of equations. The matching 
equations usually represent a non-linear, coupled and complex 
algebraic system of equations. The non-linearity emerges 
because {νi } are usually numerical parameters of an operator 
A, from which, in the majority of cases A+A provides the 
positive semidefinite form. The complex algebraic nature 

arises simply from the fact that there is no reason to restrict the 
variation domain of the parameters {νi } to a real manyfold. 

Consequently, a given transformation of a Hamiltonian  in 
positive semidefinite form (4) has its own matching equations 
(5), and the transformation of H(S) via (4) is valid only if the 
matching equations are satisfied, i.e. allow solutions. This 
information provides two main aspects which need to be 
underlined below, namely: 

I)  When the transformation of the Hamiltonian via (4) is 
done, the explicit expression of the scalar C need not be 
known, and in fact is not known explicitly. One has only the 
matching equations for it. This is important to be underlined, 
because as originating from (2) and mentioned below (4), the 
O|Ψ>=0 will provide the N-dependent ground state wave 
vector | ΨS,N,g >, and the corresponding ground state energy 
becomes ES,N,g  = C at the end of the calculations. At this stage 
it is important to stress that contrary to what (1) suggests at 
first view, the ground state energy is not known when the 
transformation in positive semidefinite form (4) is performed. 

II) The non-linear system of equations (5) allows usually 
solutions only in a restricted parameter space region Λα of 
Λ[H(S)]. This means that the transformation in positive 
semidefinite form of the Hamiltonian as shown in (4), can be 
performed in several different ways. Each transformation of 
this kind places us in a restricted parameter space region, 
where and only where, the deduced ground state wave vector 
together with its eigenvalue will be valid. In order to reach 
another parameter space region, another transformation in 
positive semidefinite form must be done, or another solution of 
the matching equations must be obtained. This motivates the 
difference in notations of the positive semidefinite operator in 
(1) – i.e. O(S) -, and (4) – i.e. O -.  As a consequence the 
following  property (Lemma 2) holds: The functional form of 
O(S) can change in different parameter space regions of the 
Hamiltonian. Namely, if  Λα  represents a given restricted 
Hamiltonian parameter space domain where the matching 
equations (5) present an individual solution, and if besides    
Λα  ∩   Λβ = Ø at  α ≠  β, one has Λ[H(S)] = Λ1 UΛ2 UΛ3 UΛ4 

U..... UΛn,, than  
 
O(S)=Oα  in   Λα , α=1,2,3,.....,n.                    (6) 
                                          
The Proof of this lemma is obvious. Indeed, a given 

individual solution of the matching equations, since fixes the 
expression of the positive semidefinite operator parameters, 
provides an individual Oα. Consequently, if the solution of (5) 
changes, also the positive semidefinite operators from (4) 
changes. In these conditions, for  Λα  ∩   Λβ = Ø at  α ≠  β and 
Λ[H(S)] = Λ1UΛ2UΛ3UΛ4U..... UΛn,, the relation  (6) 
automatically arises. Q.E.D.  

 This result shows that contrary to integrable cases where the 
whole solution and spectrum can be deduced in a single 
mathematical frame, in non-integrable cases, the ground state 
characteristics can be obtained only as a collection of different 
solutions valid in different restricted parameter space regions. 
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     D. Non-integrable Systems  
 The introductory part of this material must also specify why 

it is important to analyze in a non-approximated manner non-
integrable systems. I start by mentioning that contrary to what 
this name suggests, the notion non-integrable has nothing to 
do with the possibility to write a solution. Integrability in fact 
represents a supplementary constraint imposed to many-body 
systems. In a simplified view it requires an equal number of 
constants of motion (NCM )  and degrees of freedom (NDF  ). As 
it is known, in many-body case  NDF   has the order of 
magnitude of Avogadro's number, while usually in nature, NCM  

= Ο(10). This means that integrability occurs only in quite 
special, and mostly one dimensional cases, and in fact in 
nature, 99% of real systems are non- integrable. This motivates 
the need to analyze non-integrable 
systems.    
  The non-approximated nature refers to an exact model 
solution. Besides the situations where often poor 
approximations fail (e.g. the interaction value is high or strong  
correlation effects are present), its importance is underlined by 
the fact that exact results are important bench-marks of a given 
field. This is because they provide testing,, checking and 
developing  possibilities for model descriptions, numerical 
procedures, and approximation schemes as well.   

On the mentioned frame one must observe that the field of 
exact results for quantum mechanical many-body systems has a 
huge literature [7],[8]. But this literature is almost entirely 
connected to integrable systems. For non-integrable systems 
the exact results are extremely rare, and deduction techniques 
are practically missing. This is why the development of 
methods able to provide non-approximated results for such 
systems is of extreme importance. This demand is also 
underlined by the following aspect:  Based on the till today 
published exact results relating integrable systems, one has an 
extended good quality picture about how these systems indeed 
behave. Now generated by these state of facts, the following 
question arises: Based on this image do we see properly how 
the systems in nature behave ?  The studies which show tha the 
integrable systems evolve in time and thermalize [9]-[12] in a 
specific way given by the extensive amount of conserved 
quantities induced by integrability [13]-[16], and hence have 
non-ergodic characteristics in their behavior [17], [18] 
underline a negative answer to this question. Consequently, 
non-approximated results for non-integrable system cannot be 
avoided or substituted with something else in our aim to 
understand  the nature. 

The remaining part of the paper in Section 2 describes in 
details the deduction technique leading to non-approximated 
ground states for non-integrable systems originating from the 
background described above, and finally Section 3 containing 
a short summary and conclusions closes the presentation. 

II. THE DEDUCTION METHOD 
I describe below in details a deduction procedure of exact 

total particle number dependent ground states for non-

integrable quantum mechanical many-body systems. The aim 
of this presentation is to underline indeed the method character 
of the technique, i.e. to provide as much as possible know-how 
information at each step of the procedure. This requirement is 
motivated by the fact that otherwise, one remains only at the 
level of potential gedanken eventuality, placed far away from 
application possibilities.  

A. The First Step: the Transformation of the Hamiltonian 
 
We consider for exemplifications below Hamiltonians 

defined on a lattice or a graph.  
1. The first topic which will be analyzed  below is 

connected to the question: How we cast the Hamiltonian  in 
positive semidefinite form ?  
   As it was mentioned before in the Introduction, the first step 
of the procedure transforms in exact terms the system 
Hamiltonian  H(S) into a  positive semidefinite form as 
required by (4). For this transformation one uses usually two 
type of operators, namely:  
     i) Positive semidefinite operators of the type  

I1,i  = Σγ A+ 
i,γ  Ai,γ  , where  Ai,γ  is an operator constructed on 

a finite block surrounding the site i,  hence it represents in fact 
a block operator. At the level of a definition, the block 
operator  Ai,γ  is an algebraic sum over different operators a(in) 
acting on the site in   placed in the block Bi,γ  connected to the 
site i.   Based on this definition one has 

 
 Ai,γ = Σj  αj,γ  a(j,γ)                                                 (7) 
 

where the sum over the j index covers all the sites {in} from 
the block Bi,γ  constructed around the site i, the coefficients αj,γ 

are numerical prefactors.  I note that these numerical 
prefactors  have been denoted in a condensed form as  νi  in 
(5), because via I1,i  they become positive semidefinite operator 
parameters. The  γ  index preserves the possibility to construct 
b different blocks connected to the site i,  γ=1,2,...,b. 

The positive semidefinite nature in this case is automati-
cally provided by the  A+ 

i,γ  Ai,γ construction. Please note that 
the sum of positive semidefinite operators is also a positive 
semidefinite operator, hence O is often expressed as a sum 
over several positive semidefinite contributions (i.e. sum over i 
in I1,i  is usually present). 

ii) Positive semidefinite operators I2,i  which do not have the 
form   A+  A, where  A is an arbitrary operator and  A+   its 
adjoint.  In order to exemplify, I note that for example in the 
fermionic case which is taken as example in this paper, the 
construction Pi  = ni,↑  ni,↓  - (ni,↑   + ni,↓) + 1,  where  ni,σ = c+

i,σ   

ci,σ  is the particle number operator and c+
i,σ  ,  ci,σ  are canonical 

Fermi operators (with σ being the spin index),  is a positive 
semidefinite operator which attains its minimum eigenvalue 
zero when at least one fermion is present on the site i.  
Furthermore, the operator Di = ni,↑  ni,↓  is also a positive 
semidefinite operator with minimum eigenvalue zero when 
there is no double occupancy present on the site i, etc. 

From the above presented information the following 
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straightforward theorem arises: 
Theorem 2. The  positive semidefinite operator O from the 

right side of (4) has always the following form  
 
O = I1 + I2 , I1 =  Σγ I1,γ ,  I2 =Σγ  I2,γ ,                        (8) 
 
where I1,γ  and  I2,γ  are specified at points i) and ii) above. 
The Proof is quite simple. Indeed, a positive semidefinite 

operator or has the form  A+  A, or not, from where (8) arises. 
Q.E.D. 
   Several examples illustrating (8) in concrete cases can be 
seen in published results [1]-[6], [19]-[24] describing cases of 
real interest [25],[26].  
    At this level several questions arise, for example: What is 
the shape of Bi,γ  ?, How big should it be ? What is the number 
b of different blocks that must be chosen at a given lattice site 
? The answers to these questions depend on the Hamiltonian.  
But there are several useful observation which drive the 
transformation of the Hamiltonian as follows:  

a) For a fixed γ index, Bi,γ ,  hence  Ai,γ  is such chosen  
to obtain an  A+ 

i,γ  Ai,γ  expression which reproduces as 
much as possible terms of the starting Hamiltonian H(S). For 
example if H(S) has only short range hopping terms, the block 
Bi,γ  must be small, since otherwise, the product A+ 

i,γ  Ai,γ  
introduces long range hopping contributions which are not 
present in the starting Hamiltonian. But independent of how 
many care and precaution is taken, at fixed  γ and  Bi,γ , usually  
A+ 

i,γ  Ai,γ  introduces operator terms which are not present in 
H(S). These must be canceled out. This is the reason why 
connected to the same site i, another block Bi,γ' ,  γ  ≠ γ' ,  or 
even other blocks have to be introduced.  

Let us have an example on this line. For this reason let 
consider the system S=S1 a square Bravais lattice with Bravais 
vectors   āx   ,   āy  .  At the lattice site i one defines the first 
block, say Bi,γ=1 ,  to be an elementary plaquette containing 
four sites,  namely  (i, i+   āx  , i+  āy , i+ āx +  āy  ).  Furthermore 
one considers (for simplicity in a spinless fermion case, and 
only linear combination of fermionic operators in the block 
operator),  

 
Ai,γ=1 = a1 ci + a2 ci+ āx  + a3 ci+ āy  + a4 ci+āx +āy  ,                (9) 
 
where a1 , a2 , a3 , a4 are numerical scalar prefactors. In these 

conditions,  the product  A+
i,γ=1Ai,γ=1 creates terms of the 

form  a*
1 a4  c+

i  ci+ āx + āy  + a*
3 a2  c+

i + āx   ci+ āy  + H.c. (here H.c. 
represents the Hermitic conjugate), which represent next-
nearest neighbor hopping terms. If such hoppings are not 
present in the starting Hamiltonian H(S), they must be 
canceled out. This can be done by introducing  two more block 
operators at the same lattice site  I. These are defined on two 
new blocks, namely    Bi,γ=2    containing the sites  (i, i+ āx ,  i+ 
āx +  āy  ), and  Bi,γ=3   containing the sites  (i, i+   āx  , i+ āy). 
These triangular blocks will have the block operators   
 
   Ai,γ=2 = e1 ci + e2 ci+ āx  + e4 ci+āx +āy  ,                 

   Ai,γ=3 = f1 ci + f2 ci+ āx  + f3 ci+āy  ,                                   (10) 
 
where eα , α=1,2,4 and  fβ , β=1,2,3 are new numerical scalar 
prefactors. The products A+

i,γ=2  Ai,γ=2  and  A+
i,γ=3  Ai,γ=3  will 

create the next-nearest neighbor hoppings obtained also 
previously, but now in the form  e*

1 e4  c+
i  ci+ āx + āy  + f*

3 f2  c+
i + 

āx ci+ āy  + H.c.  Hence taking  
 
  a*

1 a4 +  e*
1 e4  =0,  a*

3  a2 +f*
3  f2 = 0,                             (11) 

  
we cancel out the not desired terms of  O. Similarly, other type 
of cancellations also can be done. 
   We further note that the  I2 contributions, see (8), are taken 
into account in order to introduce specific Hamiltonian 
contributions in  O, and the transformation (4) is performed 
usually by taking periodic boundary conditions into 
consideration. The coefficients  αj,γ  in  (7) are considered the 
same in similar blocks defined at different lattice sites, given 
by the presence of the Bravais translational symmetry in the 
regular lattice cases. But such coefficients can be different and 
even plaquette dependent when a random disordered system is 
analyzed (see for example [1]). I also underline that in  some 
cases, it is advantageous to achieve the positive semidefinite 
structure in I1 via a construction of the type Ai,γ A+

i,γ. The 
reason will be visible in the Sectio II.2. 

2. The second topic which must be analyzed here is 
connected to the matching equations. These represent 
relationships in which the positive semidefinite operator 
parameters and/or Hamiltonian parameters are present and 
preserve the validity of the transformation (4). As such, for the 
system S1  presented previously,  the equalities from (11) are 
part of the matching equations. 
    In general, the matching equations (5) are obtained by 
calculating  in a first stage, effectively and explicitly, the right 
side of (8). One obtains a sum of different operators holding 
prefactors dependent on positive semidefinite operator 
coefficients  νi   entering in  P  from (5) [in the previously 
presented example relating S1 , the νi  parameters are the 
coefficients aα , eα, , and fα  present in (9)-(11)] .  The same 
operators are present in H(S),  but in the Hamiltonian, the  
numerical prefactors are the Hamiltonian parameters entering 
in Λ[H(S)] used in (5). Finally, the matching equations are 
obtained by taking equal the coefficients of the same operator 
in the left and right (4). For example, using the blocks     Bi,γ , 
γ=1,2,3 introduced previously in the study of S1,  taking in O 
the sum contribution  I1 = Σi  Σγ=1,2,3  A+ 

i,γ  Ai,γ , the hopping 
matrix element ty of the Hamiltonian ty  c+

i  ci+ āy   becomes  
 
    ty = a*

1 a3 +  f*
1 f3 +  e*

2 e4 .                                                                (12) 

  
 This is because the operator c+

i  ci+ āy    is obtained from  I1 only 
in three places, namely with coefficient  a*

1 a3  from 
A+

i,γ=1Ai,γ=1,  with coefficient   f*
1 f3  from  A+

i,γ=3  Ai,γ=3 , and 
finally with coefficient e*

2 e4   from A+
i,γ=2  Ai,γ=2 . In the same 

way, for the Hamiltonian hopping term  tx c+
i  ci+ āx  one finds 
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    tx = a*

1 a2 +  e*
1 e2 +  f*

1 f2  ,                                                               (13) 

  
where in order, the added terms in tx appear in I1 from A+ 

i,γ  
Ai,γ  at γ=1,2,3.  Similarly, all equations of (5) can be obtained, 
which means that all Hamiltonian parameters and the scalar C 
from (4) become to be expressed as a function of positive 
semidefinite operator parameters. Turning back  to (11) and 
compairing it to (12),(13), I mention that the equations  (11) 
have zero in the right side simply because plaquette diagonal 
(i.e. next-nearest neighbor) hopping terms as ty+x , ty-x , are 
missing from H(S), i.e. ty+x = ty-x =0 holds. 
   Consequently, for exemplifying how the matching equations 
are obtained, we presented the deduction of 4 of such 
equations  in  (11)-(13) connected to the system S1 .  Several 
complete examples you can find in published results, see e.g. 
[1]-[6], [19]-[24]. 
  I further note that the resulting matching equations are 
nonlinear in the unknown positive semidefinite operator 
parameters. These equations in several cases can be 
analytically solved (see for example [3] for exemplification). 
For solutions in complicated situations stochastic methods can 
be used [27].  

B. The Second Step: the  Construction of the Ground State 
Wave Function 
  In constructing the ground state wave vector we already know 
explicitly the O structure from (8). Based on it, as explained 
below (4), we are looking for the most general wave vector 
|Ψ> which satisfies O  |Ψ> =0.  If we find this wave  
function, we have the ground state |Ψg > in our hands,  the  
corresponding ground state energy being Eg =C, where C is the 
scalar from (4).  Insights about how this job effectively can be 
done, are presented in this subsection. We will analyze here 
three different cases in three different concentration regions, 
and for simplicity one considers the block operators as linear 
combinations of  the starting canonical Fermi operators  ci,σ . 
  1. First case: low concentration of carriers 
In this case I1  is constructed as shown in Section II.A. at point 
I), namely as   I1  = Σi Σγ A+ 

i,γ  Ai,γ .  Why this case is connected 
to the low concentration limit, will be clarified  further on. 
  In the presented case the construction of the ground state 
begins with the construction of the wave vector |Ψ1> satisfying 
the condition  I1 |Ψ1> =0. Since |Ψ1> contains particles, it must 
has the form  
 
        |Ψ1> = ∏β єX  B+

β   |0>   ,                                            (14) 
 
where the index β covers a manifold X and denotes different 
(i.e. linearly independent ) operators B+ , |0> denotes the bare 
Fock vacuum with no fermions present [i.e. for the operator 
Ai,γ  containing only annihilation terms, one has Ai,γ  |0> =0 
independent on indices  (i,γ)]. Finally, B+

β   is an algebraic sum 
of creation operators, i.e. in a general spinfull case 
  
      B+

i,σ,δ  = Σj  bj,σ,δ  c+
j,σ .                                                                                           

(15) 
 
Comparing to (7), one observes that  B+

i,σ,δ  is in fact a block 
operator where the index δ  plays the role of  γ  in (7). As 
observed, the β index in (14) represents in fact a collection of 
indices β =(j,σ, δ), and bβ  are numerical coefficients. The site 
index j from (15) covers a block Ci,δ  on which the block 
operator B+

i,σ,δ  defined. But I underline that the block Ci,δ   is 
usually completely different from the block Bi,γ  present in (7). 
    In these conditions, the needed  
 
      I1 |Ψ1> =0                                                                   (16) 
 
condition is satisfied, if we have the possibility to push the  Ai,γ 

operators placed in the right side of  I1 , in front 
of the  B+

β  operators  present in  (14). If this can be done,  one 
pushes in fact the Ai,γ operators in front of the vacuum state 
obtaining by this shift Ai,γ  |0>, which by definition is zero. But 
this to be possible (note that we are in the fermionic case), one 
must has the anti-commutation relation 
 
     {Ai,γ ,   B+

i,' ,σ,δ  } =0                                                      (17) 
 
satisfied for all values of all indices. This is the prescription 
under which the operators B+

β  can be deduced. This means 
that based on (17) one can deduce the sites of the block Ci,δ  on  
which the operator B+

i,σ,δ  is defined, and in the same time one 
can deduce the numerical prefactors bj,σ,δ present in (15).  
Based on this strategy, once one has the explicit B+

i,σ,δ opera-
tors, the half of the job to solve the O |Ψ>=0 equation has been 
effectuated. This is because with (8) and (16), one has by 
|Ψ1> a good starting point for |Ψ>. After this result, the second 
half of the job follows, namely to modify  |Ψ1> in the wave 
vector  |Ψ2>  (i.e. perform  |Ψ1> →  |Ψ2>), such to not alter the 
relation  I1 |Ψ2> =0, and supplementary to have besides it also 
the equality I2|Ψ2> =0 satisfied. In other words, in 
mathematical terms , we have to push  |Ψ1> (which at the 
moment is placed only in the kernel of  I1) also in the kernel of 
I2. In order to do this job one observes that given by (17), all 
individual components β from |Ψ1>  in (14) satisfy individually 
the equality I1 B+

β |0>=0. This means that by a restriction of the 
manifold X (see (14))  to a subset Yє X, we not alter the 
relation (16), but we modify  |Ψ1> →  |Ψ2> maintaining   I1 

|Ψ2> =0. Using this procedure, by a restriction of the manifold 
X to the manifold Y, we obtain  
 
      |Ψ2> = ∏β є Y  B+

β   |0>   ,                                            (18) 
 
where now  β covers the manifold Y, and  |Ψ2> from (18), 
besides   I1 |Ψ2> =0, satisfies also  I2 |Ψ2> =0. Consequently, 
taking into account (8),  O |Ψ2>=0 holds, hence the ground 
state becomes 
 
|ΨS,N,g > = |Ψ2> = ∏β єY    B+

β   |0> .                                  (19) 
 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 695



 

 

At this stage we have to provide information about N, the total 
number of particles entering in the ground state (19). On this 
line I mention that, since B+

β  is a linear combination of 
canonical creation operators, one B+

β  operator introduces one 
particle into the system, consequently N represents the number 
of components of the manifold Y. Different β contributions  in 
(14), for example in space periodic systems, are obtained by 
the translation of  B+

β=1  to other sites. This means that in this 
case, the number of different  β  indices  usually cannot exceed 
the number of lattice sites, and their number in (18) is further 
decreased by the reduction X → Y. As a consequence, the 
concentration of particles for the here treated 1. ``first case''  is 
placed below system half filling, which means in fact low 
concentration. 
   Examples of deduced ground states of the presented kind can 
be found e.g. in [3], [19]-[23].  
 
   2. Second case: high concentration of carriers 
In this situation,  I1  is constructed (in the spinfull case) as  
 I1 =Σi,σ,γ  Ai,σ,γ A+

i,σ,γ  .  Why this case is connected to the high  
concentration limit will be visible only at the end of this 
subsection. 
   The construction of the ground states in this situation differs 
considerably from the construction procedure used in the 
previous subsection  1.  But the strategy is similar, namely we 
first obtain  a  wave vector  |Ψ3>  such to satisfy  I1 |Ψ3>=0, and 
after this stage, by  |Ψ3> →  |Ψ4>, we introduce the deduced 
wave vector also into the kernel of  I2 such to obtain besides       
I1 |Ψ4>=0, also the relation I2 |Ψ4>=0, satisfying in this manner 
O |Ψ4>=0. 
    Taking into account again in block operators only linear 
combination of fermionic operators as in the low concentration 
limit, now the starting form of the constructed wave function 
becomes 
 
           |Ψ3>= ∏η  A+

η  |0>   ,                                            (20) 
 
where the index η  is a combined index of all indices present 
on the A operators, i.e. η=(i,σ,γ). The motivation  for the 
structure of (20) is that now, because A+

η A+
η =0 holds  for all 

values of all indices, based on  (20), the relations 
 
      I1 |Ψ3>=0,                                                            (21) 
 
is automatically satisfied. The second novelty which appears 
here is that now a reduction of indices in (20) is no more 
possible, because eliminating at least one term from the 
product in  (20), the requested relation  (21) will be not 
satisfied. So in the present situation, the modification of  |Ψ3>  
such to not alter (21) cannot be done by index reduction. But, 
since only creation operators are acting on the  
vacuum state in (20), and these anticommute in between them 
by definition, adding creation operators to (20) (these must be 
linearly independent on all  A+

η operators present in    |Ψ3>), the 
equation (21)  remains non-altered. Consequently, the 

transformation  |Ψ3> →  |Ψ4> in the present case must be done 
as follows 
 
           |Ψ4>= (∏η  A+

η  ) G+
     |0>  .                                    (22) 

 
Here G+

  contains only creation operators such that the norm of 

|Ψ4> remains finite. I underline that as explained previously,  
besides  (21), the relation   I1 |Ψ4>=0 is  also satisfied. The 
advantage of  new vector presented in (22) is that it gives the 
possibility to modify  |Ψ3> in such a way to introduce it 
(besides the kernel of    I1) also in the kernel of   I2 .  In this 
manner, by properly choosing G+, one obtains as well the 
equality  I2 |Ψ4>=0, i.e. O   |Ψ4> = 0.  Consequently, the ground 
state wave function  becomes 
 
|Ψ'S,N',g > =  |Ψ4> = (∏η  A+

η  ) G+
   |0> .                          (23) 

 
How the operator G+  looks like, depends on the system S. For 
G+ explicite expressions several examples are present in the 
published literature  e.g.  [3],[5],[19],[20],[22],[23].  
   Concerning N', the total number of particles in (23), one uses 
first the observation that A+

η  (being in the present case a linear 
combination of creation canonical Fermi operators)  introduces 
one fermion into the system. Furthermore, since η=(i,σ,γ) 
contains the lattice site index i, the number of A+

η  
operators in (23) is usually higher than the number of lattice 
sites. Besides, G+ also introduces fermions into the system, so 
certainly, the number of particles in (22) is placed well above 
the system half filling value. Hence N' corresponds to high 
concentrations. 
   Deduced ground states of the presented kind can be seen e.g. 
in [3],[5],[19],[20],[22],[23],[28].  
 
  3. Third case: system half filling  
 When the system is half filled, the correlation effects are 
accentuated, hence the construction of the ground state wave 
vector needs supplementary attention. The construction 
procedure in this situation usually follows the first part of the 
strategy used in the low concentration case, point 1. Namely, 
with  I1  = Σi Σγ A+ 

i,γ  Ai,γ ,  the starting wave function uses the 
operators B+

β   deduced from the anti-commutation relation 
(17). Hence, the starting form of the constructed ground state 
becomes    |Ψ1>  from (14), consequently (16) will be satisfied.  
But now, contrary to the usual case encountered at point 1., 
where B+

β  was defined on a finite block, the solutions of  
(17) are mostly extended operators i.e. the blocks on which 
these operators are defined extend along the whole system 
(however, these blocks usually contain only a percentage of 
the total number of lattice sites). Further novelty appears in the 
procedure, since at the presented concentration value the index 
reduction [as given in (18)] usually is not possible to be 
applied. This is  because the index reduction decreases the 
number of carriers from the wave function, consequently it 
pushes the ground state in the below half filling concentration 
region. In this conditions, the  |Ψ1> →  |Ψ2> step,  i.e. the 
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introduction of the constructed wave vector also in the kernel 
of  I2,  is given by the technique 
 
       |Ψ2> = Σβ  Σβ'  aβ,β'  Πβ   Πβ'  B+

β  B+
β'  |0>,                         (24) 

 
where aβ,β' are numerical coefficients, β covers the manifold Xβ 

and  β' the manifold Xβ' , furthermore  the number of operators 
in each additive term from (24) is maintained at a constant 
value corresponding to half filling. The aβ,β'  numerical  pre-
factors are deduced from the   I2 |Ψ2>=0 condition.  Please 
note that since each individual  B+

β  operator satisfies (17), the 
condition  I1 |Ψ2>=0 automatically holds. 
   Consequently, the deduced ground state will have the form 
presented in (24).  A pedagogical example of a such type of 
solution is presented [24].  
    However extended operators in the ground state wave vector 
appear also outside of half filling (see e.g. [32],[34],[39]-[41]), 
the main difficulty in treating the system half filling case is 
connected to the treatment possibilities of the extended 
operators that one has at disposal. Developments in handling 
such operators is badly needed. 
 

C. The Third Step: The Proof of the Uniqueness   
    The proof of the uniqueness in the case of exact solutions is 
an important task, which often, even in integrable cases, is 
difficult to be effectuated. For example one knows integrable 
cases, were it turns out that not all solutions have Bethe ansatz 
form [29] (i.e. are not given by Bethe Ansatz), or in other 
cases, as for example the case of the integrable spin-1/2 XXZ 
chain, almost ten years passed from the written Bethe ansatz 
equations [30], and the proof of the uniqueness [31] of their 
solutions. 
   In the case of the method based on positive semidefinite 
operators described in details here, the proof of the uniqueness 
can be usually effectuated, and requires the study of the kernel 
of  the operator  O.  
    At the level of a definition for the kernel: For an arbitrary 
operator O,  the kernel  Ker(O) is a Hilbert subspace HK  of 
the full Hilbert space H whose all components  |φ> є  HK   have 
the property  O |φ>  = 0. 
    Once the kernel notion is fixed, the uniqueness proof can be 
done on the line of the following  Theorem: 
   Theorem 3. A deduced ground state wave vector |Ψg > 
obtained from the equation O |Ψg > =0 is unique if spans the 
kernel of O,  Ker(O).  
    The Proof goes on the following line: Indeed, if  |Ψg > is i) 
inside Ker(O),  and ii) forms a base for Ker(O), there is not 
present a |Ψ'g > vector which is linearly independent on |Ψg >, 
and satisfies  O |Ψ'g > =0. Q.E.D. 
   In the light of the above Theorem, the proof of the 
uniqueness of a deduced ground state wave function |Ψg > from 
mathematical point of view requires the proof of the following 
two steps, namely:  
A.i) the ground state is inside the kernel, i. e.  |Ψg > є  HK  , and    
A.ii) all components of the kernel can be written in term of the 

deduced ground state wave function, i.e. if  |φ> є  HK , then 
 |φ> = λ  |Ψg >, where λ  is a scalar. This uniqueness notion can 
be extended also in the degenerate case. In this situation, by 
uniqueness one understands that besides the linearly 
independent ground state components |Ψg(m)>, m=1,2,...,M, 
which together describe an M-fold degenerate ground state 
(i.e. m is the degeneracy index), other linearly independent 
 |Ψg(m>M)> wave vectors do not exist. In this case, in order to 
prove the uniqueness, we must demonstrate that B.i) all m 
components of the ground state are placed inside the kernel, 
i.e.  |Ψg(m) > є  HK  for all m=1,...,M, and B.ii) all vectors of 
the kernel  HK  can be expressed as a linear combination  of the 
|Ψg(m)>, m=1,2,...,M,  components, i.e. if  |φ> є  HK  , then  
 |φ> = Σm  λm    |Ψg(m) >, where  λm   are scalar numerical 
coefficients. 
   Concerning the uniqueness proof, I mention that given by 
(2), which must be satisfied during the ground state deduction 
process, the points A.i) and B.i) are already demonstrated 
when the ground state is deduced  and becomes to be known. 
Consequently, the uniqueness proof requires only the 
demonstration of the point A.ii) [or B.ii) in the degenerate 
case].  For demonstrating A.ii), usually one writes an arbitrary 
component of the kernel, and shows that it can be written in 
the form of the deduced ground state wave vector. In the 
degenerate case this technique can be such supplemented that 
we demonstrate that  |Ψg(m) >  being  inside the kernel, the 
transformation from  |Ψg(m)>  to   |Ψg(m+1)>  not moves the 
wave vector outside of kernel HK , and together, all |Ψg(m) >   
components span the kernel (i.e. represent a base in HK ).  
Examples for the uniqueness proof can be seen e.g. in 
[3],[20],[23].   
 

D. The Fourth Step: The Study of the Physical Properties  
 Since the ground state has been deduced without 
preconceptions, often it happens that its physical properties are 
not visible at the first view. Since the ground state at this stage 
is explicitly known, different ground state expectation values 
can be calculated with it. In this process different physical 
quantities and correlation functions can be deduced in a non-
approximated manner (see e.g. [3]) which shed light on the 
physical characteristics of the studied system. As mentioned at 
the end of Section I.A., the deduced physical properties 
describe not only the ground state, but also the low lying part 
of the excitation spectrum. 

III. SUMMARY AND CONCLUSIONS 
 
In conditions in which non-integrable systems are attracting 
main interest today [5],[25],[37],[38], the presented  paper 
describes  in details the technique which allows the deduction 
of exact results for quantum mechanical many-body non-
integrable systems. The method is based on the transcription of 
the Hamiltonian in positive semidefinite form,  and the cons-
truction of a wave vector on which we apply the obtained 
positive semidefinite operator and obtain zero as a result. This 
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technique is independent on dimensionality and integrability 
for Hamiltonians which describe physical systems. This is the 
reason why the procedure is applicable in non-integrable cases 
as well. The consecutive steps of the technique have been 
presented together with detailed know-how information, which 
have been exemplified with the broad spectrum of results 
published in the literature. 
   At the end of the presentation I would like to underline that 
the method based on positive semidefinite operators has lead 
to exact results for non-integrable many-body quantum 
systems in circumstances unimaginable before, as: disordered 
systems in 2D [1], stripes and droplets in 2D [21], 2D 
Hubbard model in the low concentration limit with 
consequences to nano-grains  [32],  multiband systems in 2D  
[28], delocalization effects of the interactions in 2D [4], 
periodic Anderson model in 3D [19],[20],  non-approximated  
non Fermi-liquid behavior of interacting Fermi systems in 3D 
[20], band flattening effect of the interaction [33], non-
integrable chain structures [22],[23],[39]-[42], or conducting 
polymers  [3],[5],[34]-[36]. This new technique successfully 
extends the possibilities of other methods [43]-[47] used 
especially in the study of strongly correlated systems. 
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